Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression
نویسندگان
چکیده
Modulation of endothelial cell proliferation and cell cycle progression by the "chemokine" platelet factor-4 (PF-4) was investigated. PF-4 inhibited DNA synthesis, as well as proliferation of endothelial cells derived from large and small blood vessels. Inhibition by PF-4 was independent of the type and the concentration of stimuli used for the induction of endothelial cell proliferation. Inhibition of cell growth by PF-4 was reversible. The effects of PF-4 were antagonized by heparin. Cell cycle analysis using [3H]thymidine pulse labeling during traverse of synchronous cells from G0/G1 to S phase revealed that addition of PF-4 during G1 phase completely abolished the entry of cells into S phase. In addition, PF-4 also inhibited DNA synthesis in cells that were already in S phase. In exponentially growing cells, addition of PF-4 resulted in an accumulation of > 70% of the cells in early S phase, as determined by FACS (Becton-Dickinson Immunocytometry Systems, Mountain View, CA). In cells synchronized in S phase by hydroxyurea and then released, addition of PF-4 promptly blocked further progression of DNA synthesis. These results demonstrate that in G0/G1-arrested cells, PF-4 inhibited entry of endothelial cells into S phase. More strikingly, our studies have revealed a unique mode of endothelial cell growth inhibition whereby PF-4 effectively blocked cell cycle progression during S phase.
منابع مشابه
Inhibition of human umbilical vein endothelial cell proliferation by the CXC chemokine, platelet factor 4 (PF4), is associated with impaired downregulation of p21(Cip1/WAF1).
Human PF4 is a heparin-binding chemokine known to be capable of inhibiting endothelial cell proliferation and angiogenesis. To explore the biological mechanisms responsible for this action, we investigated the effect of PF4 on epidermal growth factor (EGF)-stimulated human umbilical vein endothelial cells (HUVEC), a model system in which stimulation is essentially independent of interaction wit...
متن کاملفاکتورهای رشد و پریودنتولوژی امروز
Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and differentiation by acting on specific receptors on the surface of cells and regulating events in wound healing.They can be considered hormones that are not released in to the blood stream but have one a local action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion ...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملGnidilatimonoein from Daphne mucronata inhibits DNA synthesis in human cancer cell lines
The anticancer agents from plant sources usually exert their action through a wide range of mechanisms. As part of our studies of plants for new anticancer agents with emphasis on Thymelaeaceae family, we examined the cytotoxicity and anti-tumor activity of the water extract of D. mucronata leaves against induced breast tumor in rats. In the current study, we were interested to obtain some know...
متن کاملGnidilatimonoein from Daphne mucronata inhibits DNA synthesis in human cancer cell lines
The anticancer agents from plant sources usually exert their action through a wide range of mechanisms. As part of our studies of plants for new anticancer agents with emphasis on Thymelaeaceae family, we examined the cytotoxicity and anti-tumor activity of the water extract of D. mucronata leaves against induced breast tumor in rats. In the current study, we were interested to obtain some know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 127 شماره
صفحات -
تاریخ انتشار 1994